Brain microdialysis in exercise research.

نویسندگان

  • R Meeusen
  • M F Piacentini
  • K De Meirleir
چکیده

During the last 5 to 10 years, the microdialysis technique has been used to explore neurotransmitter release during exercise. Microdialysis can collect virtually any substance from the brains of freely moving animals with a limited amount of tissue trauma. It allows the measurement of local neurotransmitter release in combination with ongoing behavioural changes such as exercise. Several groups examined the effect of treadmill running on extracellular neurotransmitter levels. Microdialysis probes were implanted in different brain areas to monitor diverse aspects of locomotion (striatum, hippocampus, nucleus accumbens, frontal cortex, spinal cord), food reward (hypothalamus, hippocampus, cerebral cortex), thermoregulation (hypothalamus). Some studies combined microdialysis with running on a treadmill to evaluate motor deficit and improvement following dopaminergic grafts in 6-hydroxydopamine lesioned rats, or combined proton nuclear magnetic resonance spectroscopy and cortical microdialysis to observe intra- plus extracellular brain glucose variations. This method allows us to understand neurotransmitter systems underlying normal physiological function and behaviour. Because of the growing interest in exercise and brain functioning, it should be possible to investigate increasingly subtle behavioural and physiological changes within the central nervous system. There is now compelling evidence that regular physical activity is associated with significant physiological, psychological and social benefits in the general population. In contrast with our knowledge about the peripheral adaptations to exercise, studies relating exercise to brain neurotransmitter levels are scarce. It is of interest to examine the effect of short and long term exercise on neurotransmitter release, since movement initiation and control of locomotion have been shown to be related to striatal neurotransmitter function, and one of the possible therapeutic modalities in movement, and mental disorders is exercise therapy. Until very recently most experimental studies on brain chemistry were conducted with postmortem tissue. However, in part because of shortcomings with postmortem methods, and in part because of the desire to be able to directly relate neurochemistry to behaviour, there has been considerable interest in the development of 'in vivo' neurochemical methods. Because total tissue levels may easily mask small but important neurochemical changes related to activity, it is important to sample directly in the extracellular compartment of nervous tissue in living animals. Since the chemical interplay between cells occurs in the extracellular fluid, there was a need to access this compartment in the intact brain of living and freely moving animals. Estimation of the transmitter content in this compartment is believed to be directly related to the concentration at the site where these compounds are functionally released: in the synaptic cleft. As measurements in the synapse are not yet possible, in vivo measurements in the extracellular fluid appear to provide the most directly relevant information currently available. This article provides an overview of the in vivo microdialysis technique as a method for measuring in the extracellular space, and its application in exercise science. Although this technique has been used in different tissues such as brain, adipose tissue, spinal cord and muscle, in animals as well as humans, we will focus on the use of this in vivo method in brain tissue. Recently two excellent reviews on the application of microdialysis in human experiments especially in subcutaneous tissue have been published, and we refer the interested reader to these articles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats.

The present microdialysis study has examined whether exercise-elicited increases in brain tryptophan availability (and in turn 5-HT synthesis) alter 5-HT release in the hippocampus of food-deprived rats. To this end, we compared the respective effects of acute exercise, administration of tryptophan, and the combination of both treatments, upon extracellular 5-HT and 5-hydroxyindoleacetic acid (...

متن کامل

Simultaneous NMR microdialysis study of brain glucose metabolism in relation to fasting or exercise in the rat.

To study the impact of exercise or fasting and of subsequent glucose supplementation on glucose metabolism in rats, a spectrophotometric method was used to determine peripheral blood glucose; a technique associating (1)H-NMR spectroscopy and cortical microdialysis was also used to observe intra- plus extracellular and extracellular brain glucose variations, respectively. Compared with control a...

متن کامل

Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor.

Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was per...

متن کامل

Cerebral microdialysis: research technique or clinical tool.

Cerebral microdialysis is a well-established laboratory tool that is increasingly used as a bedside monitor to provide on-line analysis of brain tissue biochemistry during neurointensive care. This review describes the principles of cerebral microdialysis and the rationale for its use in the clinical setting, including discussion of the most commonly used microdialysis biomarkers of acute brain...

متن کامل

Exercise and Neurotransmission: A Window to the Future?

Peripheral physiological adaptations to exercise have been the subject of several studies. To adjust to the disturbance in resting homeostasis induced by the exercise stimulus, a number of regulatory systems are called upon to return the body to a new level of homeostasis. In contrast with our knowledge about the peripheral adaptations to exercise, studies relating exercise to brain neurotransm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Sports medicine

دوره 31 14  شماره 

صفحات  -

تاریخ انتشار 2001